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ABSTRACT 

We estimate exponential sums with additive character along an atone va- 

riety given by a system of homogeneous equations, with a homogeneous 

function in the exponent. The proof uses the results of Deligne's Well 

Conjectures II and a generalization of Lefschetz hyperp|ane theorem to 

singular varieties. We apply our estimate to obtain an upperbound for 

the number  of integer solutions of a system of homogeneous equations in 

a box. Another  application is devoted to uniform distribution of solutions 

of a system of homogeneous congruences modulo a prime in the following 

sense: the portion of solutions in a box is proportional to the volume of 

the box, provided the box is not very small. 

1. In t roduc t ion  

This paper is devoted to the study of exponential sums of "homogeneous" type, 

and to their applications. In the first part we consider exponential sums along 

an afflne variety given by a system of homogeneous equations, with a homoge- 

neous function in the exponent (Section 3). Such a sum is often computed in 

terms of the number of points on the corresponding projective variety and on its 

hyperplane section (Lemma 3.1). To estimate it we obtain a version of Lefschetz 

hyperplane theorem valid on singular varieties (Theorem 2.1). To the best of 

our knowledge, this theorem, though its proof follows the proof of the classical 

Lefschetz theorem (see, e.g., [15], VI.7.1), does not seem to exist in the litera- 

ture. The defect to which the classical Lefschetz theorem fails is measured by 
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the dimension of the singular locus of the hyperplane section. Appealing to the 

Well Conjectures II we obtain bounds for exponential sums which hold without a 

non-singularity condition (normally indispensable if one uses Deligne's formalism 

[5], cf. [31, 8.4, [12], 5.1.2, [1], 4.20, [13], 5.7.0). 

Bounds of this kind can be used in various diophantine problems, notably in 

estimating the number of integer solutions of a system of homogeneous equations 

in a box, e.g., via the circle method of Hardy-Littlewood. This method gives 

an expression for the leading term, but it applies only if the number of variables 

is large in comparison with the number of equations and their degrees (cf. [16] 

and references therein). A simpler approach was suggested by Heath-Brown ([9], 

Appendix 2). Although less powerful, it has the advantage that the analytic 

part is more or less reduced to the Poisson summation formula, and that one 

encounters only exponential sums of prime modulus. The method results in the 

statement that the number of points in the square box of size a is at most a ~ for 

a certain fl > 0. 

By a similar argument, Fujiwara ([7], Thm.1) proved that the solutions of a 

system of homogeneous congruences modulo prime p are uniformly distributed 

in the following sense: the portion of solutions in a box is proportional to the 

volume of the box, provided its size is at least pX for a certain q, > 0. 

In the second part of this paper we employ the techniques of Heath-Brown 

and Fujiwara, using the estimates of exponential sums obtained in Section 3. 

To estimate ~ and "f we need to know "how many" hyperplane sections of our 

variety have singularities of given dimension. We summarize some information 

of this kind in Section 4, where the most general bound follows from the work 

of Zak [18]. The proofs of Theorems 5.1 and 5.2, where the bounds for the 

number of solutions in a box are deduced, closely follow the corresponding proofs 

in [7]. We reproduce them for the sake of completeness. However, now we are 

in an advantageous position with the results of Section 3 and 4 at our disposal. 

Consequently we improve and generalize the previous results ([9], App.2), [14], 

[2], [6], [7], [17] to (absolutely irreducible) varieties that need not be complete 

intersections, and may be singular, in other words, to (almost) arbitrary systems 

of homogeneous equations with integer coefficients. 

We previously used the method of this paper for complete intersections [17], 

where the bounds can be made more precise. 

This work has benefited from helpful discussions with Nicholas Katz and 
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Feodor Zak. I am grateful to Igor Shparlinskii and Serge Vl£du~ for their in- 

terest in this work. 

I would like to express my gratitude to University of Puerto-Rico,  University 

Paxis-7, and the Mathematical Institute of the Technical University of Denmark, 

where parts of this work have been carried out. 

2. A G e n e r a l i z a t i o n  o f  Lefsche tz  H y p e r p l a n e  T h e o r e m  to  S i n g u l a r  

Varieties 

In this section k is an algebraically closed field. Let V be a vector space over k, 

dim(V) = N,  and let P = P(V) be the corresponding projective space. 

Let X C P be a closed irreducible scheme. We are interested in the following 

question: how different is the cohomology of X from that of the intersection of 

X with a hypersurface? Applying the Veronese embedding if necessary, we can 

restrict ourselves to considering hyperplane sections. So let us fix a linear form 

f E V*. Let H C P b e  a h y p e r p l a n e g i v e n b y  f = 0, and let XH  = X N H  

be the (scheme-theoretic) intersection of X and H.  Let us denote by Sing X 

the minimal subscheme of X such that X \ SingX is regular. Let n = dim(X), 

s = dim(SingXH). We can assume without loss of generality that X is not 

contained in H. Then s < dim(XH) = n -- 1. 

We consider 6tale cohomology with coefficients in A = Z/ lmZ,  where l is a 

prime different from char (k). 

THEOREM 2.1: Let X be irreducible and not contMned in H. For j > n + s + 1 

there are canonical isomorphisms 

Cj : HJ(XH,  A ( - 1 ) )  ~ , Hi+2(X,A) .  

If  s < n - 2 there is also a canonical surjection 

~ , + ,  : H"+*(XH, A(-1) )  -~ Hn+s+2(X, A). 

I f  X and X H  are regular, ¢J are the Gysin maps. 

Proof." Let U = X \ X H ,  W = X H k S i n g X H ,  V = X \ ( S i n g X U S i n g X H ) .  Note 

that H A SingX C SingXg,  therefore W C V, V \ W = U \ SingX. Consider 

the natural  embeddings: 

X H  i j ~ X ~ U, 

i' j '  
Sing XH ~ X H  ( W, 

i" j"  
W , V , V \ W .  
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For a sheaf F we define 

dimsupp(F) := sup{dim(x)[F~ # 0}, 

where z ~ X is a closed point. It is clear that 

R ° j , A u  = A x ,  Rg j ,Au  = i* Rqj ,Au,  q >_ 1. 

Let us remark that i" : W "--* V is a closed embedding of smooth schemes. 

By the purity theorem for the smooth pair (W, V) of codimension one (cf. [15], 

VI.5.1 and VI.6.1) we have a canonical isomorphism: 

• .* ,~1 . , , -  A ( - 1 ) w .  z ~ 3,1tV\W --- 

We can compute this sheaf locally in any neighbourhood of W, for instance, in 

X \ Sing XH = W U U. Thus we obtain 

(2.1) j ' * i * R l j , A v  = A ( - 1 ) w  

Likewise, it follows from [loc.cit.] that j~*i*Rqj,Au = 0 for q _> 2. By the affine 

Lefschetz theorem (cf. [15], VI 7.3) we have dim supp (R ' j ,Av )  <_ n - q, hence 

dimsupp(Rqj ,Av)  < mSn{s,n - q} for q _> 2. This implies 

(2.2) HP(X, Rq j ,Av )  = 0, p > min{2s,2n - 2q}, q >_ 2. 

Consider now the Leray spectral sequence for the morphism j : U * X,  

whose E2 terms are of the form 

HP(X, Rq j ,Av )  ==~ HV+q(U, A). 

By (2.2) we obtain the long exact sequence 

H"+*(XH, i * R l j , A v )  , H"+°+2(X, A) , Hn+°+2(U, A) 

Hn+*+I(XH,i*Rl j ,Av)  ~ . . .  

By the theorem on cohomological dimension of aft-me vareties (cf. [15], VI. 7.2) we 

have Hq(U,A) = 0 for q > n. Since s >_ - 1  we obtain the canonical isomorphisms 

(2.3) @q: H~(XH, i * R l j , A v )  ~ , Hq+2(X,A), q _> n + s + 1, 
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and the canonical surjection 

(2.4) ~,+,  : Hn+S(XH, i*Rl j ,Av)  ~ H"+s+2(X, A). 

If i : X / /  ~ X is an embedding of smooth varieties, then (2.1) reduces to 

i*Rl j ,Au  = A ( - 1 ) x s .  Now s = -1 ,  and we get the classical Gysin isomorphisms 

H q ( X H , A ( - 1 ) )  ~ , H q + 2 ( X , A ) ,  q > n, 

and the classical Lefschetz hyperplane theorem follows. In the singular case we 

must do some extra work. 

Let us show that 

(2.5) Hq(X/ / , i*Rl j ,A)  = H¢(XH, A(-1)),  q > 2s + 2. 

Consider the two long exact sequences in cohomology with compact supports: 

--+ H ' - ' (S ingXH,  h ( -1 ) )  ---, H~(W, h ( - 1 ) )  ---, H'(XH,  A(-1))  

II 
--* Hq-l(SingXH, i"*i*Rlj .Av)  --* H~(W,j"*i*RIj .Av)  --* H~(XH, i*Rlj ,  Av) 

where the vertical isomorphism comes from (2.1). Since dim(SingXH) = s, we 

obtain (2.5). 

Now note that s < dim(X//) -- n - 1, hence 2s + 2 < n + s + 1, and we 

can put together (2.3) and (2.5) to get the first claim of the theorem. If s < 

dim(X//) - 1 = n - 2, hence 2s + 2 < n + s, then our second claim follows from 

(2.4) combined with (2.5). I 

Remark: A slightly different proof may be given using the theory developed in 

SGA 7, Expos~ 1, especially, Cor. 4.3 (cf. the proof of Thin. 2.3 of [17]). 

COROLLARY 2.2: Let X be irreducible and not contained in H. There are canon- 

ical isomorphisms 

¢ i : H J ( X H ,  Qt(-1))  ~ , HJ+2(X, Qt), j > n + s + l .  

//" s < n - 2 there is a canonical surjection 

• , + , :  H"+°(x//, -* H"+'+2(x, 

Let us note than if k is an algebraic closure of a finite field Fq, and X and H 

come from schemes defined over Fq, then the maps l}j commute with the action 

of the Frobenius endomorphism. 
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3. E x p o n e n t i a l  S u m s  o f  " H o m o g e n e o u s "  T y p e  

Let q be a prime power, q = pr, Fg be the field with q elements. Let k be an 

algebraic closure of Fq. We keep the notation of Section 9., except that we now 

assume that all objects are defined over Fq, unless otherwise stated. Let Y C A N 

be the affine cone over a projective variety X C p N - i  and Y(~'q~) be the set of 

Fq~-points of Y. Let G be a form of degree d with coefficients in Fq. For each i fix 

a nontrivial additive character Xi : Fe~ --+ C*. We are interested in the following 

exponential sum: 

s,(Y,a) := ~ x,(a(x)) 
z EY(Fq~ ) 

We shall refer to S~(Y, G) as to a "homogeneous" exponential sum. The condition 

that G and the defining equations of Y are homogeneous, is fairly strong, as 

revealed by the following elementary 

PROPOSITION 3.1 ([17], 3.1): Let XG be the intersection of X with the hyper- 

surface given by G( z ) = O. Then for i such that q~-1 is coprime with d = deg( G), 

and for any non-trivial additive character X~ : Fq~ -* C*, we have 

s~(Y, a )  = q ~ # X G ( r ¢ )  -- #X(~'¢) + 1. (3.1) 
Proof: 

S,(Y,G) = i +(q'-  i)-' ~ Z x,(a(tx)) 
tEF,~ zEY(F,~)\(O} 

= 1 - (qi - 1 ) - I (#Y(Fg , )  - 1) 

+ (q'- 1) -~ ~ ~ x,(t'a(x)) 
t~e'q~ z~Y(F~)\{o} 

= 1 -- # X ( F ¢ )  + qi#Xa(F¢) .  R 

Note that  under the assumptions of this proposition Si(Y, G) is an integer 

which does not depend on the choice of the character X~. The proposition is not 

true without the assumption (d, qi _ 1) = 1. For instance, let i = 1, N = 2, 

X = p1, y = A 2, G(z ,F)  = z q-1 -~/q-1.  Then 

S,(A~, = q-1 - u q-~) = 11 + (q - 1)x,(1)[ ~. 

Let us introduce some more notation. Define XG = X N {G = 0}. Let X be 

the variety obtained from X by extension of the ground field to k, X = X xr ,  k, 

and similarly, X a = XG x r, k. 
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THEOREM 3.2: Let X C P be an absolutely irreducible projective variety of 

dimension n over Fq, and Y the a/~ne cone over X.  Let G be a homogeneous 

form in N variables with coetticients in Fq of degree d, (d, q -  1) = 1, not vanishing 

identically on X. Then for i such that (d,q i - -  1) = 1, we have 

(3.2) ]S~(Y, G)[ < Cq ~"+;+'. 

where s = dim(SingXo). The constant C depends only on the topology of X 

and X o :  

.+s .+s-2 

(3.3) C < Edim_Q,(HJ(X, Qt)) + E din~,(Hi(-XG'Qt))" 
i=0 j=0 

Proof." By the Grothendieck trace formula (cf. [15], VI.13.4) we have 

2n 

#X(Fq,)  = E ( -  1)iTr(FiIHi('X' Q~))' 
j=0 

where F is the Frobenius endomorphism. Likewise, for X o  we have 

2n--2 

qi#Xo(F, , )  = q' E ( -1 ) iTr (F i lHi (XG'  Qt)) = 
/=0 

2n--2 

= E (-1)iTr(FiIHi(-XG'Qt(-1)))" 
j---O 

It follows from Corollary 2.2 that for j ~ n + s + 1 we have 

Tr(Fi[HJ(X, Ql)) = Tr(F  i ]HJ-a(XG, Qt(-1))).  

According to ([4], 3.3.1) the eigenvalues of F i on HJ(X ", Q~) are algebraic numbers 

whose absolute values (with respect to any complex valuation) are at most qiiD. 

Now the theorem follows from Proposition 3.1 and Corollary 2.2. | 

The bound (3.3) is certainly very rough. One may hope that the theorem is 

true without the assumption (d, qi _ 1) = 1. 

Let us consider a particular case of the above result. 
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COROLLARY 3 .3:  / / ' X  = p N - 1 ,  y = A N, then for i such that (d, qi _ 1) = 1, we 

have 

iN+.+1 
(3.4) IS (AN, c)I  = I X,(C(X))I  _< Cq 

zE(Fq~) ~r 

where C depends ordy on the topology of Z, where Z C P is given by G(x) = O; 

s = dim(Sing Z). 

If (d,p) = 1, and G has no singular point, that is, OG/Oxl . . . . .  OG/Oxn = 0 

has no solutions for ( x l , . . . ,  xn) e k n \ {0}, then s = - 1 ,  and we get the bound 

with the same exponent as that of Deligne ([3], 8.4). As an easy example shows, if 

we fix s = dim(Sing Z), the exponent in Corollary 3.3 is in a sense best possible. 

Example 3.4: Let G(x l , . . .  ,XN) = GI(Xl,... ,XN-r-1) be a form which actu- 

ally contains only variables z l , . . .  ,XN-r-1 .  We further assume that the projec- 

tive hypersufface Z1 in pN- r -2  given by G1 ( x l , . . .  , x lv-r -1)  = 0 is non-singular. 

In other words, Z C pN-1 given by G ( z l , . . .  ,XN) = 0 is a cone with the ver- 

tex pr  over the non-singular N - r - 3-dimentional variety Z1. In particular, 

s = dim(Sing Z) = r. We have (under the usual assumption (d, qi _ 1) = 1): 

Si(A ~v, G) = qi(°+l)Si(AN-'-1,  G1) 

= qi(,+l)(qi#Zl(Fq ,) _ qi(N-s-2) _ qi(N-,-S) - - . . .  _ qi) 

= qi( '+2)(-1)N-°-3Tr(Fi lH~i-~ ' -s(Z1,  Qt)). 

where HN-J-Sd-Z ~ x p~im ~ 1 ,~t)  is the primitive part of H N - ' - s ( Z 1 , Q t ) .  By [3] the 

eigenvalues of F i on HN-a-3(Z1,  Qt) have complex absolute values qi(N-o-s)/2, 

thus in general it is not reasonable to expect an exponent in Corollary 3.3 better  

than i N+s+I. 
2 

Other corrollaries from Theorem 3.2 can also be deduced, for example, homo- 

geneous singular analogs of [12], 5.1.2. 

In case of varieties given by equations with integer coefficients, the bound (3.2) 

holds for all but a finite number of primes. 

Let us consider an absolutely irreducible affine variety Y C A~ defined by a 

system of homogeneous equations with integer coefficients 

(3.5) . . . . .  = 0. 
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We denote 5i := deg(Fi), i = 1 , . . .  ,m. Let G = G(xl , . . .  ,xN) be a form of 

degree d with coefficients in Z, not vanishing identically on Y. Define Ya C A~ 

by the equations 

(3.6) , x N )  = F I ( = , , . . .  . . . . .  = O. 

Sing Yc denotes the singular locus of Yd. 

THEOREM 3.5: There exists a constant C = C(N;d;51, . . .  ,6m), and a finite 

set B of primes depending on the forms G, F1,. . .  ,F,n, such that for any prime 

power p i, p ~ 13 and (d,p i - 1) = 1, and for any non-trivial additive character 

X, : Fp, --* C*, we have 

(3.7) I x,(a(x))l  _< C~v/~ I im(Y)'l'dlm(SingYa). 

Here the sum is over x e (F,,)N satisfying (3.5). 

Proof: It will be convenient for us to consider the corresponding projective 

varieties X C F g  -1 (respectively, X a  C F~ -1) given by (3.5) (respectively, 

(3.6)). Let dim(X) = n, dim(SingXa) = s. Then the right hand side of (3.7) is 

Let us fix a prime ~. In the natural way, X extends to the scheme 3~ C Pz N-1 

given by (3.5). Then :~p -- :~ Xz Fp is "the reduction of X modulo p". There 

exists an integer L, g[L, large enough such that 3~ Xz Z[L -1] is flat over Z[L -1] 

with absolutely irreducible fibres. This implies that dim(Xp) = dim(X) = n 

for p /[L. In the same way, let 3~a be the subscheme of :~ given by (3.6). Let 

~G,p : ~G XZ[L-t] Fe. We can enlarge L so that :~a is flat over Z[L-1], hence 

dim(~G,p) equals the dimension of the generic fibre XG of :~G, that is n - 1. 

This provides that the reduction of G modulo p does not vanish identically on :~p. 

Consider also the subscheme Sing ~G C 3~G given by adding to (3.6) the equations 

describing that the rank of the Jacobian matrix of (3.6) is less than N - n .  Clearly 

3EG \ Sing:~G is smooth over Z[L-1]. Let Sing3~G,p = Sing3EG XZ{L-,] Fp. Once 

again we enlarge L so that Sing3Ea is fiat over Z[L-1], hence dim(Sing:~a,p) = 

dim(SingXa) = s. Finally, we choose B as the set of primes dividing L. Now it 

remains to apply Theorem 3.2 to q = p i  3~p XFp Fq, and ~a,v xFp Fq, and to use 

the following lemma. | 
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LEMMA 3.6: Let £ be a prime. Let X C F = F N-1 be a closed subscheme 

de//ned by the vanishing of m forms of degrees ~1 . . . .  , ~,,, over an Mgebraically 

dosed t~eld k of characteristic different from L Then there exists a constant C 

depending only on N and ~1,--. ,8,-, such that dimo, H i ( X ,  Qt) < C for any 

i > O .  

(6~+N-1~ and let A t' be the scheme parametrizing homogeneous Proof." Let r i  = ~ N - I  / '  

polynomials of degree i/i in N variables. Consider the "universal" polynomial of 

degree//i: 
a l  a N  

• ~ - / ( X l , . . .  , X N ) : =  ~ ~i;al ..... aN;gl ' ' ' X N  , 

here ~i;,t ..... "N for a l  - t- . . .+aN = ~i are coordinates in A~ ~ . Let r := rl + . . . + e r a ,  

A~ := A~ t x . . .  x A ~  "~. Define 91 C pN-1 x A ~  to be the scheme given by 

E1 . . . . .  F.,~ - 0. Let rr be the natural projection 91 ~ A~. Let x --* A~ be 

the closed point such that X is the fibre of Ir at z, 91x = X. By the finiteness 

theorem (of. [15], VI.2.1) Ri~r.Qt is a constructible sheaf. By the proper base 

change theorem (cf.[15], VI.2.5) we have (Ri~r, Qt)z  = H i ( X ,  Qt). We have 

Ria',Qt = 0 for i > 2(N - 1). It remains to choose C as the maximum of the 

dimensions of the fibres of Ri~r, Qt. II 

4. Singularities of Hyperplane Sections 

In this section we work over an algebraically closed fidd k. Let X C P = F N-1 

be an irreducible projective variety not contained in a hyperplane. We shall 

summarize our knowledge concerning the following questions: 

1) How singular a hyperplane section XH = X N H can be? 

2) What  is the dimension of the set of hyperplanes H when the number 

dim(SingXn) is fixed ? 

With this purpose in mind, let us introduce some notation. Let /5 ~ FN-1 

be the dual projective space. For i > - 1  define Zi to be the dosed subset of /5  

consisting of hyperplanes H C F such that 

dim(SingXn) > i. 

In particular, if X is smooth, Z0 is no other than the dual variety .g. Let us define 

di := dim(Zi), a := max{ i [Z /¢  0}. Thus a is the maximal possible dimension 

of Sing Xt~. The following parameter of purely geometric nature contains all 
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geometric information about X which we shall use in the arithmetical applications 

in Section 5: 
a(X):= min ! [ n - i  

-1<i<~ 2 1 d i  + l J "  

In this section we obtain some lower bounds on a(X)  via upper bounds on a 

and di. We start with some elementary remarks. 

LEMMA 4.1: 

(a) I f  X is smooth, then di < N - i - 2. 

(b) Assume that SingX # 0, m = dim(SingX). Then 

di < min{N - 1, N + m - i - 2}. 

Proof." Consider the following diagram: 

U U U 

X ~  T , Z 0  

where 7r~ and ~r2 are the natural projections, T is the set of pairs {(z ,H)[  z 

X , H  ~ ~ ,x  ~ SingXH}. In particular, ~v~-I(H) = SingXH. We have Z0 = 

7r2(T), Zi = {H E Z0]dim(~r2-X(H)) _~ i}, thus d i m ( Z / ) + i  _< dim(T). So 

let us compute dim(T). If z • SingX, then dim(Tr11(x)) = N - n - 2, thus 

dim(~r11(X \ SingX)) = g - 2. This proves (a). On the other hand , for 

z e Sing X we have dim(~r~ -l(x)) = g -  2, hence dim(~r11(Sing X)) = g -  2 + m, 

and (b) follows. | 

A general restriction on a follows from a powerful theorem of Zak ([18], 2, 

Cor.5): 

(4.1) a < _ N - n  + m - 1 .  

LEMMA 4 . 2 :  Assume that X is smooth, and d i m ( ~ ' )  = N - 2. T h e n  

d i < _ N - i - 3 ,  i>_l .  

Proo£- For a smooth X, T is a PN-"-2-bundle  over X,  in particular, T is 

irreducible. We have Z0 ~ Z1, otherwise 

dim(T) = dim(~r~-l(Z0)) = dim(~r~'l(Z1)) _> 1 + dim(,~) = N - 1. 
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Thus r~-l(Z0 \ Z1) is a non-empty subset of T, but since dim(X) = dim(T), 

we must conclude that it is open. It follows that dim(~r~-l(Z1)) < N - 3, hence 

i + dim(Zi) < N - 3 for i > 1. I 

Not for every smooth X the dual variety )( is a hypersurface. For instance, 

if X is the Grassmarmian G(2, 2n + 1) with its Pliicker embedding, then X is of 

codimension 3. See [10] for a formula for dim(X) in terms of the Chern classes 

of X. 

I have learnt the following nice lemma from F. L. Zak (el. [11], Appendix, 

Thm. 2).* 

LEMMA 4.3: Let X be a complete intersection, then a <_ m q- 1. 

Proof: It is known that a hyperplane section of a smooth complete intersection 

can have at most isolated singularities [8]. This proves the lemma in the smooth 

case. In the singular case, take a projective subspace L C P, codim(L) = m + 1 , 

in general position, that is, not contained in H, and such that dim(L O X) = n - 

m - l ,  LAX  is smooth, dim(LnSing XH) = dim(Sing XH)--m--1. Then XHNL is 

a hyperplane section of a smooth complete intersection XAL.  Thus Sing(XHAL) 

is at most 0-dimensional by [8]. Clearly L n SingXH C Sing(XH N L), therefore 

dim(SingXg) - m - 1 < 0. | 

In case of hypersurfaces a more precise statement was communicated to me by 

N. M. ga tz  (cf. [11], Lemma 1). 

LEMMA 4.4: Let X C P be a hypersurfaee. Then for any hyperplane H C P we 

h~ve 

dim(Sing XH) <_ dim(H O Sing X) + 1 < dim(Sing X) + 1. 

Proof: Let X be given by a form f in variables z = ( z l , . . .  ,XN),and H be 

given by zl  = 0. We have 

H n S i n g X = X n H n { z l f f ~ f z i ( z ) = O  , i = 1 , . . .  , g } ,  

Of rz ~ 
S i n g X t t = X N H n { x b - ~ z i ~  , = 0 ,  i = 2 , . . . , N } .  

Thus H O Sing X is a subset of Sing Xtt  given by one equation ~ (z) = 0, hence 

dim(H O SingX) > dim(SingXH) - 1. | 

* This is also proved in: S. Ishii, A characterization of hyperplane cuts of smooth 
complete intersection, Proc. Japan. Acaxl. Set. A. 58 (1982) 309-311. 
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Recall that if X is singular, the dual variety X is defined as the Zariski closure 

of the set of hyperplanes which are tangent to X at its smooth points. 

LEMMA 4.5: Let P 6 X C P be an isolated singular point. 

(a) /£ H 9 P is a generic hyperplane passing through P, then P is an isolated 

singular point on XN.  

(b) / f  the dual variety f (  is not contained in a hyperplane, then the set of H 

such that P is a non-isolated singularity of XH, is of dimension at most 

N - 4 .  

(c) I f  X is a hypersufface of degree d, which is not a cone, and char(k) > d or 

char(k) = 0, then we have the same conclusion as in (b). 

Proof: The statement is local, so we can replace X by X '  = (X \ Sing X)  U {P}, 

which is an irreducible n-dimensional quasi-projective variety. We introduce 

some notation: 

V = {(z, H)IH 6 I', z 6 Sing((X' \ {P}) (] H)}, 

Vo = H) VIH P}. 

It is easy to see that V is a pN-n-2-bundle  over X '  \ {P}, thus dim(V) = N - 2. 

Since V0 C V, we have dim(V0) < N - 2. Now let us assume that (a) is not true. 

Then for a generic H passing through P we would have dim(Sing(X' n H))  > 1, 

implying dim(V0) > N - 1, which is a contradiction. 

Let us now explore the situation when dim(V0) = N - 2 .  Since V is irreducible, 

and V0 is dosed in V, we have V0 = V. This says that every hyperplane tangent to 

X at its smooth point passes through P .  Thus 3f is contained in the hyperplane 

dual to P,  hence (b). 

Assume that p = (1, 0, ..., 0), and X is given by the vanishing of an irreducible 

form f (z )  of degree d. The tangent hypersufface at a smooth point z 6 X 

passes through P if and only if an-/7=, (x) = 0. Thus the proof of (b) implies that 

an-/7=, (z) = 0 for all x 6 X \ SingX, hence X is contained in {zI~-L=~ (z) = 0). Since 

X is not contained in a hypersurface of degree d - 1, the form a°--/?=~ (x) is zero. 

Under the assumption that char(k) > d or char(k) = 0, X is a cone with vertex 

P if and only if 0a-/7=, (z) is identically zero. This proves (e). 1 

Let us now concentrate on the case of hypersurfaces with isolated singular 

points. 
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COROLLARY 4.6: Let X be a hypersurface of degree deg(X), with at most iso- 

lated singalar points, then ~ = 1, do = N - 2 ,  dl < N - 3 .  ~lone of the following 

conditions is satisfied: 

(i) the dua/variety f f  is not contained in a hyperplane, 

(ii) X is not a cone, and char(k) = 0 or char(k) > deg(X), 

then dl < N - 4. 

Proof.- There are two possibilities:H fl SingX = ¢, or H passes through a 

singular point of X.  In the first case dim(Sing Xtt)  < 0 by Lemma 4.4. In the 

second case dim(SingXtt)  < 1 by the same lemma. We bound dl using Lemma 

4.5. | 

COROLLARY 4.7: Let X C P = pN-1 be an irreducible projective variety not 

contained in a hyperplane, dim(X) = n, dim(SingX) = m. 

(a) ~IX is singular (m >_ 0), then a ( X )  >_ 1 - N+,,-12, for n _> ½(N + m), and 
1 ~(x)  >_ 2(N+.,-.) for .  < ½(N + m); 

(b) ~IX is smooth, and the dual variety X is a hypersurface, then 

I 2(N i), ,~(x) > 2(N - n) f ° r  '~ < - 

a(X)>l_ --N-2forN-l-~l>n>~(N-1),2n 

~(x) _> ~ for ~ _> ~ - 1 - v~ - ~. 
2(N - i) 

(c) /IX is a slngu/ar complete intersection, then a(X) _> 2-'('ff~,"-"-2" 
n ° (d) ~IX is smooth complete intersection, then a ( X )  >_ 2(N--Wz~-I , 

(e) I f  X is a hypersufface with at most isolated singalarities, such that X is 

not a cone,  and d~ar(k) = 0 or char(k) > deg(X), then a ( X )  -> ~-rV-~'N-2 

Proof: (a) easily follows from Lemma 4.1 (b), (4.1), and the trivial bound 

tr < n - 1. The statement (b) is a combination of Lemma 4.1 (a), Lemma 4.2, 

and (4.1). The statements (c) and (d) follow from Lemmas 4.1 and 4.3. Finally, 

(e) follows from Corollary 4.6. | 

Note that the bound in (e) is the same as that in (d) for n = N - 2, that is the 

bound for smooth hypersurfaces is the same as that for hypersurfa~es with only 

isolated singularities. Note also that  (d) coincides with (b) for small codimension. 

This is certainly no surprise. A stronger result would follow from Hartshorne's 
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conjecture that a smooth variety X C pN-1 is a complete intersection as soon 

as n = dim(X) > }(N - 1). 

5. Applications to Distribution of  Rat iona l  Points  

Let z = ( x l , . . .  ,XN) and G(x) = {GI(x), . . .  ,Gr(x)} be a system of forms 

with integer coefficients defining an absolutely irreducible variety X C p ~ - I  not 

contained in a hyperplane. By Y C A~ we denote the corresponding a~ne cone, 

that is, the at~me variety defined by the same system G(x) = O. 

Consider the box of size b > 0 with the center in a E RN: 

B(b):={x[xieR, I~,-a,l<b, i=I,...,N}, 

vol B(b) = (2b) N. We shall assume that b is an integer. If p # 2 is a prime and 

b = (p + 1)/2, we identify B(b) t3 Z N with F N. 

Let X v C P,, = p ~ - I  be the variety given by G(x) = 0 over Fp (the re- 

duction of X modulo p), and similarly, Yr C A~. For p # 2 the set of Fp- 

points yp(Fp) is identified with the set of solutions of the system of congruences 
G(x) =- 0(modp) in B((p + 1)/2). Define 

L(G, b) := #{x ~ B(b)IG(x) = 0}, 

Np(G, b) := #{x  ~ B(b)IG(x) = O(modp)}. 

The computation of Np(G, b) for b -- (p+ 1)/2 follows from the Weil conjecture 

proved by Deligne. The aim of this section is to estimate Np(G, b) for b not too 

small, b < p, and to obtain an upper bound for L(G, b) for large b. 

We start with some remarks of scheme-theoretic nature similar to those in the 

proof of Theorem 3.5. In a natural way, X extends to the scheme ~ C Pz = 

p N - 1  such that 3~p = ~ ×z Fv. There exists an integer L large enough such 

that ~ Xz Z[L -I] is flat over Z[L-I]. This implies that dim(~p) = dim(X), 

deg(3~p) = deg(X), for p ~ L. Let Sing3E be the subscheme of 3~ given by 

adding to G(x) = 0 the equations describing that the rank of the Jacobian 

matrix of G(z) = 0 is less than N - 1 - dim(X). The closed points of Sing3~ 

over Z[L -1] are the singular points of their fibres, (Sing3t)r = Sing3tr, p { L. 

Making L larger we can arrange that Sing 3~ is flat over Z[L-1]. In particular, 

dim(Sing 3~r) = dim(Sing X). 
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In the same way, let ~: be the scheme in P XZ{L-~] P whose closed points are 

the pairs (x, H)  such that x is a singular point of the hyperplane section of a 

fibre of ~ by H. Let 7r2 be the second projection P ×Z[L-~] P --* P. Define the 

relative version of Z~ as Zi := {H • PIdim(r~-l(H)) _> i}. Once again, we 

enlarge L so that all Zi are flat over Z[L-1]. Let Zi,v = Zi ×Z[L-,] Fp, then 

dim(Zi,v ) = dim(Zi), and therefore a(3~p) = a (X)  for p ~ L. 

THEOREM 5.1: Let dim(X) = n. Choose a small ~ > O, then t'or any prime p, 

p > C1(~, G), and for any integer b, p ~ b >_ C2(e, G)p l-a(×), we have 

(1 - -  g ) p  n - N ' t ' l  VO1 B(b) <_ Np(Y, b) <_ (1 + 6)p "-N+I vol B(b). 

Remark: In particular, we get a bound for the smallest non-trivial solution of 

a system of congruences. For p large enough, G(x) _= 0(modp) has a non-trivial 

solution in the box B(b) of size b >_ b(G)p 1-~(x). 

Proof." By the previous remarks, there exists L • 7. depending on the equations 

G(x), such that p ~ L implies that 3~ v satisfies the same geometric assumptions 

as X: 3~ v is absolutely irreducible, not contained in a hyperplane, dim(:~v) = 

dim(X), deg(3~p) = deg(X), and a(:~v) = a(X).  We assume that CI(e,G) > L. 

Let us recall the method of Fujiwara ([7], Thm.1). Let z = ( x l , . . . ,  XN) be 

real variables. Define the counting function F(x)  -- 2N(1 - - ] Z l l , . . . ,  (1 --IZND 

in the box Ixi] < 1, i = 1, . . .  ,N ,  and let F(x)  = 0 elsewhere. Let e(z) := 

exp((27rv/-Z]'z), ep(z):--  e(z/p) for z • Z. 

LEMMA ([7], Lemma 1)): Assume that for any small ~ > O, for any prime p > 

C1(~, G), and any b such that p >_ b >_ c1(~, G)p 1-~(x) we have 

(5.1) ( 1 -  e)p "-N+I volB(b) _< ~ F ( b - l ( x -  a)) <_ (1 +e)p , -N+l  volB(b). 
z EZ N 
piG(,) 

Then the conclusion of Theorem 5.1 is true. | 

We continue to follow the proof of [7], Thin.1. Let xl = Yi + pzi, zi E Z, 

y~ • {0,1, . . .  , p - 1 } .  Note that piG(x) if and only if piG(y), that is, y • yv(Fp). 
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Using the Poisson summation formula we obtain 

Z f (b - l (x  -a) )  = Z Z F(b- l (Y -  a -t- pz)) = 
zez ~ y~y,(r,) zez~ 
piG(z) 

~ e y , ( F , )  eR~ 

b N 
= p'--g E E eP(-(u'(y-a)))F(bp-Xu)' 

yfiYp(Fp) uEZ~ 

where (u.z) = UlZ 1 -~- . . .  -]- UNZN, and F (z )  is the inverse Fourier transform of 

F(x), .F(x) = 2Ng(za)... g(XN), g(z) = sin2(¢z)/¢2z 2. Since P(0) = 2 N we get 

b N 
= E E 

e~zN u~y,(F,) 

volB(b) ~ p ( F p )  q- 2 -N  
- - ~  t Y~ ep((u'a)lP(bp-~u)S'(Y"-u)} ' (5.2) 

uez~\{0} 

where S I ( Y p , - u )  = ~ y e y , ( F , ) % ( - ( u . y } )  in the notation of Section 3. Let 

n = dim(X). Since dim(2Cp) = n, deg(Xp) = deg(X), the Lang-Weil theorem 

writes as 

(,.5.3) I•Yp(Fp) - pn+l] <_ A(N, n, deg(X))p n+l]2. 

1 _,+x (2A(N, n, deg(X)) /e)  2. The right hand side in (5.3) is at most ~et, if only p > 

It remains to show that for such a p and b > G2(s)p 1-~'(x), the sum in (5.2) is less 

a ep,,+l Since F vanishes at the non-zero integer points, and we assumed than ~ 

b E Z, the terms with u E (pZ) N \ {0} do not contribute to our sum. Let us 

divide Z N \ (pZ) N into subsets Aa, s = - 1, O, 1 , . . .  , n -  1, defined by the following 

property: up := u(modp)  is a Ep-point on the affine cone of Za,p \ Za-a,p. We 

now estimate the corresponding sums. Let us write ~ s  for the sum over u E Aa. 

We have 

I ol _< Isx(Y,,-u)l P(bp-au). 
ttEAs 

Since we have here that  dim(Sing3~p,e) = s, where 3~p,. is the hyperplane 

section of 3Ep by <u,.x) = 0, we can use the bound (3.2): [SI(Yp,-u)[  _< Cp "+;+' • 
The constant C depends only on N and the degrees of the equations of G by 

Lemma 3.6. 
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Recall that do stands for dim(Z,). We now claim that if Zo ~ 0, then 

(5.4) ~ .~(bp-lu) < C'(G)(b-tp) 't°+1. 
u E A ,  

Let us assume (5.4) for a moment, and show how to complete the proof of the 

theorem. Since b _> C2(e, G)p 1-a(x),  where C2(e, G) is not yet specified, we get 

C( G)C'( G)p~+'~ (b-I p) d° 
< C(G)C'(G)C~(e, G)-(d'+l)p "~r;~''+a(x)(d°+l) 

< C(G)C~(G)Cz(e, G)-(d,+I)p ~+1. 

Choosing C2(e, G) large enough we arrange that IE, I < ½(n ÷ 1)-lep n+l, thus 

the sum in (5.2) is less than ½ep "+1. Combining this with (5.3) we obtain (5.1), 

and thus prove the theorem. 

The inequality (5.4) follows from (5.5): 

(5.5) ~ P(ITt--lu) < c(W)m d, p > p0(W), 1 < m < p. 

Here W C A~ is an affine variety defined by equations with integer coefficients, 

dim(W) = d; W C A N is the affine scheme defined by the same equations, 

Wp := W xzFp.  The sum is over u E Z N such that the reduction o f u  modulo p, 

denoted by uv, is a Fp-point of Wp. (The sum (5.4) is dominated by (5.5) with 

W equal to the affme cone of Z,, ra = pb-1.) Before proving (5.5) note that for 

K = K(N) we have the following easy estimate (cf. [7], (6)): 

(5.6) E ~'(a + m- 'u)  <-- KmN'a E RN' m >_ l. 
~f iZ  N 

We prove (5.5) by induction on d. For d = 0 andp  > K ' (W) ,  we have #Wp(Fv) < 

deg(W), hence (5.5) is bounded by K deg(W). In the general ease we may assume 

W irreducible. Let us remove Sing W as a closed subset of dimension at most 

d - 1. Let W'  = W \ Sing W. Let Q be an algebraic closure of Q. Choose a 

Q-point z = ( z l , . . .  ,ZN) on W ~, and let Tz,w be the tangent space to W at z, 

dim(Tz,w) = d. For a subset I = { i l , . . .  ,id} C {1, . . .  N )  consider the natural 

projection 7rx : A N ~ Aid, where At d is given by zi = 0, i ¢ I. Clearly there exists 

such a subset I for which ~rl maps Tz, w isomorphieally onto A}. The same is 
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true for a Zariski open neighbourhood W" of z, which we may choose defined 

over Q. This implies that  W" is Zariski dense in W'. We may remove W' \ W" of 

dimension at most d -  1. Then rz restricted on W" is a finite morphism of degree 

deg(~rl) = deg(W). If p is large enough, then the same holds for the reductions 

of these varieties modulo p. Since P is the product of functions in one variable, 

we can apply (5.6) first to the (zero-dimensional) fibres of ~rx, and then to the 

base. Hence the sum over W" is bounded by deg(W)K2m 't. | 

THEOREM 5.2: There exists a constant C3 = C3(G) such that 
N N-.-t 

L(G,b) < C3b - ~ .  

Proof." We follow the proof of [7], Thm. 3. Choose a prime p in the range 

b O-~'(x))-I < p < 2b (1-~(x))-*. Note that 

L(a,b) <_ Np(G,b) <_ E F((2b)-lx)" 
z6z N 
piG(z) 

We have b >_ ca(G)p 1-~(x). The proof of Theorem 5.1 then shows that for b large 

enough we have (cf. (5.1)): 

Nv(G , b) <_ c4(G)p "-N+I vol B(b) <_ c~(G)b N-(N-"-I)(1-a(X))-'. | 

For smooth complete intersections of codimension t, t = N - n - 1, this result 

combined with Coronary 4.7 (d) gives ([17], Thin. 3): 

(5.7) L(G, b) < Ca(G)b N-2t+ N~';-, 

We can note that the exponent in Theorem 5.2 involves the dimension of X and 

¢r(X) as the only characteristics of X. In particular, (5.7) is best for complete 

intersections of least possible degree, that  is, for complete intersections of quadrics 

(cf. the discussion and the references in [171). 

Example 5.3: Let X be a hypersufface with at most isolated singularities, which 

is not a cone. (Clearly 3 is the least degree for which such hypersuffaces may 

exist). Then we have a(X)  _ ~ by Coronary 4.7 (e). Now it follows from 

Theorem 5.2 that 

(5.8) L(G, b) <_ C3(G)b N-2+~'. 

This bound coincides with Fujiwara's bound for smooth hypersuffaces [6]. (The 

exponent is the same as in (5.7) for t = 1.) | 
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l~]xample 5.4: Let X be a singular complete  intersect ion of codimension t -- 

g - n - 1, d i m ( S i n g X )  = m. By Corollary 4.7 (c) we get 

N 2 t ~  2tft+rn~ 
L(G,b) < C3(a)b - 

Example 5.5: On the o ther  hand,  let X be a smoo th  variety of dimension n, 

g - l - ~ - I  _> n >_ ] ( N -  1), t ha t  is of codimension t = N - n - l ,  

1 < t < ½ ( g  - 1). Then  by  Corol lary 4.7 we have a ( X )  _> 1 - _~.___22. Now 

Theo rem 5.2 reads as follows: 

L(G,b) < c3(a)b I 

Refe rences  

[1] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra, Ann. 

Math. 130 (1989), 367-406. 

[2] R. C. Baker, Sinai/solution of congruences, Mathematika 30 (1983), 164-188. 

[3] P. Deligne, La conjecture de Weil I, Math. IHES 43 (1974), 273-307. 

[4] P. Deligne, La conjecture de Weil II, Math. IHES 52 (1981), 313-428. 

[5] P. Deligne, Applications de la [ormule des traces aux sommes trigonomgtriques, 
Cohomologle e~ale (SGA 4 1/2), Lecture Notes in Math. 569 (1977), 168-232. 

[6] M. Fujiwara, Upper bounds for the number of lattice points on hypersurfaces, in 

Number Theory and Combinatorics, World Scientific (1985), 89-96. 

[7] M. Fujiwara, Distribution of rational points on varieties over finite fidds, Mathe- 

matika 85 (1988), 155-171. 

[8] W. Fulton and It. Lazarsfeld, Connectivity and its applicatlons in algebraic geom- 

etry, Lecture Notes in Math. 8{}2 (1981), 26-92. 

[9] D. R. Heath-Brown, Cubic forms in ten variables, Proc. London Math, Soc. (3) 

47 (1983), 225-257. 

[10] A. Holme, On the dual of a smooth variety~ Lecture Notes in Math. 732 (1979), 

144-156. 

[11] C. ffooley, On the number of points on a complete intersection over a finite field. 

(With an appendix by N. M. Katz), J. Number Theory 38 (1991), 338-358. 

[12] N. M. Katz, Sommes exponentlelles, Ast~risque 79 (1980). 



Vol. 80, 1992 EXPONENTIAL SUMS 379 

[13] N. M. Katz and G. Laumon, Transformation de Fourier et majoration de sommes 

exponentielles, Publ. Math. IHES 62 (1985), 165-202. 

[14] G. Meyerson, The distribution of rational points on varieties defined over a finite 

fie/d, Mathematika 28 (1981), 153-159. 

[15] J. S. Milne, EtMe cohomology, Princeton Math. Series 83 (1980). 

[16] W. M. Schmidt, The density of integer points on homogeneous varieties, Acta 

Math. 154 (1985), 243-296. 

[17] I. E. Shparlinskii and A. N. $korobogatov, Exponential sums and rational points 

on complete intersections, Mathematika 87 (1990), 201-208. 

[18] F. L. Zak, The structure of Gauss maps. (In Russian), Funct. Anal. Appl. 21 

(1987), 39-50. 


